Асинхронные электродвигатели: особенности эксплуатации

Асинхронные электродвигатели: особенности эксплуатации

Главное меню

  • Главная
  • Паровые машины
  • Двигатели внутреннего сгорания
  • Электродвигатели
  • Автоматическое регулирование двигателей
  • Восстановление и ремонт двигателей СМД
  • Топливо для двигателей
    • Реактивные и дизельные топлива
    • Очистка топлива
    • Топливо для судовых двигателей
    • Испытания и обслуживание фильтров
    • Расчет топливных сепараторов
  • Карта сайта

Судовые двигатели

  • Судовые двигатели внутреннего сгорания
  • Судовые паровые турбины
  • Судовые газовые турбины
  • Судовые дизельные установки

В современной электроэнергетике почти повсеместно пе­ременный ток вытесняет постоянный. Это объясняется многими преимуществами машин переменного тока в сравнении с ма­шинами постоянного тока. В частности, у машин переменного тока вес, габариты и стоимость меньше, а к. п. д. выше; они проще в обслуживании, долговечнее и надежнее машин посто­янного тока. Правда, электродвигатели переменного тока хуже поддаются регулировке, они развивают значительно меньшие пусковые моменты. Поэтому, если от электродвигателей требу­ются высокие регулировочные качества и повышенные пусковые моменты, применяют электродвигатели постоянного тока.

Привод механизмов портовых подъемно-транспортных машин чаще всего осуществляется асинхронными электродвига­телями трехфазного переменного тока, получившими наибольшее распространение в электроэнергетике. Зависимости от исполнения ротора, различают асин­хронные электродвигатели с короткозамкнутым ротором и с фазным ротором (с контактными кольцами). Принципиальная схема включения этих электродвигателей приведена на рис. 40..

Из курса электротехники известно, что принцип действия асинхронных электродвигателей основан на использовании так называемого вращающегося магнитного поля. При подаче трехфазного тока в обмотке статора создается магнитное поле, вращающееся со скоростью

где f— частота тока в обмотке статора;

р — число пар полюсов обмотки статора.

Эта скорость называется синхронной. Магнитное поле статора, (пересекая обмотку ротора, наводит в ней э. д. с., ко­торая создает в цепи ротора ток. Последний, взаимодействуя с магнитным полем статора, образует вращающий момент, заставляющий ротор вращаться в ту же сторону, что и магнит­ное поле статора. При нормальной работе асинхронного электродвигателя его ротор вращается со скоростью п 2 1 . Если бы скорость вращения ротора была равна скорости, с которой вращается магнитное поле статора, то последнее относительно ротора было бы неподвижным. В этом случае э. д. с. и ток в обмотке ротора были бы равны нулю и никакого вращающего момента не возникло бы.

Величиной, характеризующей работу асинхронного электро­двигателя, является скольжение s :

где n 1 —синхронная скорость;

n 2 — скорость вращения ротора.

Зная скольжение, нетрудно определить скорость вращения электродвигателя

При работе электродвигателя без нагрузки скорость его близка к синхронной, а скольжение очень мало.

Двигательный режим асинхронного электродвигателя имеет место при скольжениях, изменяющихся в пределах от 0 до 1, при этом число оборотов ротора изменяется от n 1 до 0. Номинальная величина скольжения асинхронного электродви­гателя составляет 0,03—0,1, причем первая цифра относится к более мощным, а вторая — к менее мощным электродвигателям (до 10—20 квт).

Очевидно, s = 0 в том случае, когда ротор вращается с син­хронной скоростью n 1 . Можно считать, что на холостом ходу электродвигателя его ротор вращается с этой скоростью, если не учитывается трение.

Величина скольжения s =1, когда ротор электродвигателя не вращается при включенной обмотке статора. Этот режим называют режимом короткого замыкания электродвигателя (или режимом стоянки под током). Получить режим короткого замыкания можно, искусственно затормозив ротор или пере­грузив электродвигатель до полной остановки его. Пуск асин­хронного электродвигателя также начинается именно с этого режима.

Выражение (81) показывает, что скольжение может изме­няться гораздо в больших пределах, чем указано выше. Дей­ствительно, ротор электродвигателя под действием посторон­него источника механической энергии (например, под действи­ем опускающегося груза) может вращаться со скоростью больше синхронной. В этом случае скольжение будет отрицательным (s 2 >n 1 .

Можно также представить, что ротор электродвигателя под действием опускающегося груза вращается в направлении, противоположном направлению вращения магнитного поля ста­тора. В этом случае s>1, так как в выражение (81) величи­ну п 2 нужно подставить с отрицательным знаком. Такой ре­жим называется режимом противовключения.

Таким образом, теоретически скольжение асинхронного электродвигателя может изменяться в пределах от —? до + ?. Практически же скольжение асинхронного электродви­гателя при работе последнего в двигательном и тормозных режима« изменяется в пределах от —2 до +2.

Из курса электрических машин известно, что для асинхрон­ного электродвигателя может быть составлена схема замеще­ния, с помощью которой производится анализ работы электродвигателя и исследуются режимы его работы. На рис. 41 при­ведена упрощенная схема замещения асинхронного электро­двигателя, в которой приняты следующие обозначения:

U 1 — фазное напряжение обмотки статора, в;

I 1 — фазный ток обмотки статора, а;

I — фазный ток холостого хода электродвигателя, а;

I 2 — приведенный фазный ток обмотки ротора, а;

r 1 и х 1 — активное и индуктивное сопротивления фазы обмотки статора, ом;

r 2 ’ и х 2 ‘ — приведенные активное и индуктивное сопротивления фазы обмотки ротора, ом.

Для приведенных величин могут быть выведены следующие соотношения:

где т 1 и т 2 — число фаз обмоток статора и ротора;

к = U / E — коэффициент трансформации э. д. с. (U — номи­нальное фазное напряжение обмотки статора; E — фазная э. д. с. обмотки ротора при разом­кнутых контактных кольцах).

Мощность Р 1 забираемая электродвигателем из сети, опре­деляется напряжением сети U 1 , током статора I 1 зависящим от нагрузки, и коэффициентом мощности cos? т.е.

Мощность на валу электродвигателя зависит от его к. п. д.? и может быть вычислена по формуле

Если пренебречь механическими и вентиляционными поте­рями, которые незначительны, то можно считать, что механи­ческая мощность асинхронного электродвигателя (мощность на валу) равна, потерям мощности в сопротивлении схемы замещения, приведенной на рис. 41, т. е.

где т 2 = т 1 — приведенное число фаз обмотки ротора.

Между токами асинхронного электродвигателя, согласно схеме замещения, существует зависимость

Ток статора асинхронных электродвигателей I 1 очень велик даже при отсутствии нагрузки на валу. Это объясняется тем, что намагничивающий ток этих электродвигателей составляет 50—70% номинального тока статора.

Читайте также:
Как закрыть дверной проем гипсокартоном видео

Эксплуатация и обслуживание электродвигателей

Подписка на рассылку

  • ВКонтакте
  • Facebook
  • ok
  • Twitter
  • YouTube
  • Instagram
  • Яндекс.Дзен
  • TikTok

Персонал, занимающийся технической эксплуатацией и обслуживанием электродвигателей, должен руководствоваться требованиями раздела 5.2 Правил технической эксплуатации электрических станций и сетей РФ и руководством по эксплуатации конкретного электродвигателя.

Техническая эксплуатация электродвигателей

Соблюдение определенных правил обеспечивает надежную и безопасную эксплуатацию электродвигателей:

  • Отклонение напряжения и частоты питания электродвигателя должно оставаться в пределах 10%. Соблюдение этого условия позволяет эксплуатировать двигатель на номинальной мощности;
  • Необходимо контролировать надежную работу устройств пуска и защит;
  • Необходимо проводить регулярные осмотры двигателей, которые находятся в резерве. Проводить опробование систем автоматического включения резервного питания (АВР). Периодичность данных мероприятий регламентируется местными производственными инструкциями;
  • На электродвигателях и связанных с ними механизмах обязательно должно быть обозначено направление вращения. Обозначается стрелкой;
  • В заводских руководствах по эксплуатации двигателей указываются уровни концентрации пыли в воздухе и соответствующие им степени защиты корпуса;
  • Продуваемые двигатели (устанавливаются в местах с высокой концентрацией пыли в воздухе, а также во влажных помещениях) должны иметь систему подачи чистого воздуха. Герметичность трубопроводов системы продува проверяется как минимум 1 раз в год;
  • Электродвигатели, охлаждение которых производится контуром с водой и те, что оборудованы системой продува с жидкостным охлаждением воздуха, должны оборудоваться сигнализацией попадания жидкости в корпус;
  • Электродвигатели, с системой подачи смазки в подшипники, должны оборудоваться системой останова двигателя при прекращении подачи смазки или превышении допустимой температуры подшипника;
  • В случае перерыва в питании электродвигателей ответственного тепломеханического оборудования
  • должен быть обеспечен их запуск посредством повторного включения от основного источника напряжения. Или включение от резервирующего источника при помощи АВР. Максимальное время перерыва питания ≤2,5 секунд. Оборудование, считающееся ответственным, указывается в специальном перечне;
  • Если электродвигатель отключен срабатыванием основных защит, запрещается запускать его без проведения осмотра и измерений сопротивления изоляции. Когда электродвигатель входит в состав ответственного оборудования и не имеет резервного питания, допустимо повторное включение без измерения сопротивления изоляции. Если электродвигатель отключен срабатыванием резервных защит, запуск возможен только после обнаружения причин, приведших к их срабатыванию;
  • Необходимо контролировать и содержать в обозначенных пределах уровень вибраций в подшипниках;
  • Также электродвигатели подвергаются профилактическим испытаниям и измерениям. Периодичность и виды мероприятий определяется объемами и нормами испытаний.

Техническое обслуживание электродвигателей

Техническое обслуживание (далее ТО) имеет две разновидности – плановое и неплановое.

Плановое обслуживание подразумевает проведение с определенной периодичностью обязательных мероприятий по обслуживанию двигателя независимо от его состояния. Запрещено уменьшать объем и увеличивать периодичность мероприятий по ТО.

Мероприятия при плановом техническом обслуживании:

  • производится очистка поверхностей и различных полостей от загрязнений и мусора;
  • тщательный осмотр питающего кабеля на предмет повреждения изоляции, проверка и протяжка всех болтовых соединений, осмотр заземляющих проводников;
  • производится проверка и протяжка соединения двигателя с фундаментом;
  • проверяются все уплотнения;
  • производится проверка соединения вала двигателя и механизма, который он приводит в движение;
  • выполняется диагностика состояния подшипников;
  • измеряются рабочие токи, сопротивление изоляции обмоток относительно корпуса и между собой.

Записи о проведенных работах вносятся в журнал эксплуатации.

Неплановое ТО (текущий ремонт) производится при выявленных отклонениях от нормального режима работы электродвигателя, неисправностях, которые были обнаружены при плановом обслуживании, при аварийной остановке электродвигателя.

Устройство и использование двигателей асинхронного короткозамкнутого типа

В статье рассмотрим, почему наиболее популярен именно асинхронный двигатель в исполнении с короткозамкнутым ротором. Изучим положительные и отрицательные качества конструкции. Также расскажем о распространенных поломках и способах их выявления.

Современное электроснабжение осуществляется посредством сетей переменного тока. Оборудование и электроприборы производятся в соответствующем исполнении. К ним можно отнести и асинхронные трехфазные двигатели. Есть несколько разновидностей таких моторов, однако наиболее широко применяется вариация с короткозамкнутым ротором (обычая или реверсивная), о которой и пойдет речь в данной статье. Причина такой популярности в простоте конструкции и малой себестоимости производства.

Конструктивные особенности

Основными элементами электродвигателя любого назначения являются статор и ротор. Для защиты от контактов с окружающими объектами система с обмотками закрывается в прочный кожух. Предотвратить перегрев обмоток позволяет дополнение в виде установленного на роторном валу охлаждающего вентилятора.

Статор асинхронного трехфазного двигателя с короткозамкнутым ротором имеет стандартное для электродвигателей строение. Исполнение, рассчитанное на работы с обмотками на три фазы, подразумевает расположение сердечников под углом в 120 о . Обмотки выполняют из медной проволоки подходящего сечения, изолированной. Подключение обмоток производится в звезду или треугольник (оно описано в отдельных статьях). Статорный магнитопровод жестко фиксируют к стенкам корпуса.

Роторная часть имеет внешний вид, похожий на небольшую цилиндрическую клетку. Парные кольца исполняют роль короткозамыкающего элемента для стержней, изготовленных из алюминия. Если рассматривать конструкцию высокой мощности, для нее стержневые части конструкции могут изготавливаться из меди. Причиной использования данного материала служит его низкое сопротивление. Однако есть и минусы – медь для обмотки стоит дороже алюминия и быстрее плавится при нагреве сердечника вихревыми токами.

Расположение стержней при сборке выполняется поверх сердечников из специальной трансформаторной стали. Монтаж производят на валу агрегата, провод обмотки впрессовывается в специальные пазы магнитопровода. Простота изготовления повышается тем, что в таком исполнении для магнитопроводных пластин не требуется изоляция. Это – один из главных факторов, сделавших асинхронный агрегат короткозамкнутого типа самым популярным (его доля в общей массе электромоторов достигает 90%).

Разновидности по количеству фаз

В зависимости от исполнения и способа подключения конструкции для короткозамкнутого вида делят на 3 типа, каждый из которых имеет свои особенности:

  1. Однофазные. Применяется единственная рабочая обмотка. Запуск производится посредством катушки индуктивности, на короткий период подключаемой к сети через конденсатор. Также возможен вариант короткого замыкания. Конструкция рассчитана на малую мощность, и широко применяется в бытовых приборах.
  2. Двухфазные. Статорная конструкция использует 2 обмотки, расположенные перпендикулярно относительно друг друга. Подача переменного напряжения при этом производится на каждую из них. Основное направление применения – однофазные сети. Для корректной работы в таких условиях напрямую к фазе подключается только одна из обмоток. Вторая запитывается посредством фазосдвигающего конденсатора. Данный элемент является обязательным, поскольку без его добавления в схему вращение вала не начнется. В силу такой особенности двухфазные асинхронные двигатели иногда называют конденсаторными.
  3. Трехфазные. Конструкция подразумевает 3 обмотки. Могут производиться с разными системами пуска, однако в любой конструкции отличаются повышенной стабильностью работы при номинальной нагрузке. Имеют самые высокие пусковые характеристики.
Читайте также:
Подводные камни сдачи двухкомнатной квартиры

Количество и расположение обмоток выбирают в зависимости от типа сети и уровня нагрузок, которые придутся на мотор.

Различия между короткозамкнутым и фазным ротором

Система такого мотора построена на основе трех обмоток статора, формирующих разное количество магнитных полюсов (в зависимости от конструкции, выбранной в процессе проектирования). Объем полюсов на обмотках оказывает влияние на номинальный режим работы. Роторная система же может быть выполнена в 2 вариантах – короткозамкнутом и фазном.

Короткозамкнутый ротор

При помещении в движущееся магнитное поле статора, замкнутый виток проводника начнет индуцировать ЭДС, вследствие чего будет вырабатываться ток. Из-за этого замкнутый контур начинает подвергаться воздействию сил Ампера, поворачиваясь в том же направлении, что и у магнитных полей статора.

В этом заключается основной принцип работы короткозамкнутого электродвигателя. Вместо замкнутого контура в конструкции применяется набор стержней из меди или алюминия, замкнутых накоротко кольцами. Переменное напряжение при прохождении по статорным обмоткам создает вращающееся магнитное поле. На замкнутых контурах роторной конструкции появляется ток, и вся система приходит в движение. Вращение происходит за счет разной величины индуцируемого тока на парах стержней, что постоянно меняется в зависимости от расположения парных элементов относительно магнитного поля.

Для устранения пульсации и сохранения постоянности крутящего момента стержни «беличьей клетки» располагаются не параллельно валу. Небольшой наклон также снижает действие высших гармоник при работе электродвигателя.

Фазный ротор

Асинхронные модели с фазным ротором конструктивно имеют полноценную обмотку. В роторной конструкции предусмотрены специальные пазы, в которых укладываются провода. Выводы от обмотки подключены к контактным кольцам, которые расположены на валу. При этом поверхности данных элементов изолированы друг от друга и от вала. Конструкция обмотки составлена 3 частями, каждая из которых отвечает за отдельную фазу. Наиболее распространенным способом подключения является звезда. Фазные системы более сложны, чем короткозамкнутые и имеют большую себестоимость. Однако они предоставляют больше возможностей по регулировке рабочего момента на валу.

Статорная обмотка в фазном электродвигателе представляет собой аналог ротора на короткозамкнутой конструкции. Она создает разное количество парных полюсов, объем которых зависит от набора катушек, сдвинутых относительно друг друга на определенную величину (120 о , 60 о , 40 о и т.д.). Регулировка рабочего момента осуществляется посредством управления напряжением на обмотках.

Скольжение S

Параметр скольжения есть во всех асинхронных силовых агрегатах. Возникает данное явление из-за разницы в частоте вращения магнитного поля статора и ротора. Индуцируемая в стержнях ЭДС может появляться только при их движении относительно магнитного поля. Ротор при этом немного отстает.

Если скорости вращения одинаковы, в стержнях клетки не индуцируется ток, что делает невозможным дальнейшее движение. Поэтому в любом исполнении и рабочей нагрузке ротор движется с немного меньшей скоростью, чем магнитное поле.

Измерение скольжения производится в процентах. На холостом ходу данный показатель стремится к 0. При застопоренном роторе (КЗ) параметр равен 1. В асинхронной системе с короткозамкнутым ротором параметр скольжения зависит от нагрузки.

Пусковой ток

Прямой пуск мотора характеризуется значительно большим уровнем тока, чем при его стабильной работе. Пусковой показатель может превышать номинал в 5-8 раз. При этом номинальный ток всегда указывается производителем на шильдике двигателя, тогда как пусковой описан только в технической документации. В характеристиках этот параметр указан как отношение пускового тока к номинальному.

Как вычислить пусковое напряжение?

Есть несколько способов произвести расчет пускового тока для асинхронного двигателя. Эти варианты пригодятся в том случае, если величина соотношения не указана в технической документации или сопровождающие бумаги были утеряны:

  1. Осциллограф. Проверка показаний производится в момент пуска посредством резисторного шунта. Действующее напряжение вычисляют из максимального амплитудного значения, после чего, используя закон Ома, определяют пусковой ток. Преимущество такого способа в получении конкретных данных по определенному двигателю.
  2. Пониженное напряжение. В таком варианте на двигатель подается сниженное в 5-10 раз напряжение и производится замер. После пересчета получается пусковой ток. Причем замеры достаточно произвести для 1 фазы. На остальных пусковые показатели должны быть аналогичными. Данный способ применяется на производстве для получения данных, отображаемых в таблице. Основанием служит номинальный ток, поэтому в каждом отдельном случае пусковой показатель может быть другим.
  3. Токоизмерительные клещи. Простой и быстрый метод. Наиболее точные показания получаются при замере на системах с длительным пуском и высокой инерцией. Например, это могут быть вентиляторы или двигатели с массивной крыльчаткой.
  4. Трансформатор. Способ, применяемый в узлах учета электроэнергии. Используя трансформатор, не нужно измерять реальный ток, достаточно получить его величину, уменьшенную в определенное количество раз. Существенным минусом метода является то, что трансформатор рассчитан на частотный диапазон в 50-60 Гц, тогда как пусковые переходные процессы могут иметь более широкий спектр и гармоники.

Важно помнить, что, в силу определенных факторов, заявленный производителем пусковой ток будет иметь большую кратность, чем его реальное значение.

Читайте также:
Шкаф-купе в спальню из дерева: обзор материалов и вариантов наполнения мебели

Как уменьшить напряжение при пуске асинхронного мотора

Большое пусковое усилие часто становится проблемой, вызывая перегрузки питающей сети, перегрев, ускоренный износ двигателя. Поэтому необходимо иметь возможность понизить его величину для сохранения работоспособности и долговечности систем. Есть несколько способов:

  1. Плавный пуск. В таком варианте на двигатель подается сначала пониженное напряжение с постепенным повышением до номинала. Для реализации метода используются УПП (устройства плавного пуска) или частотные преобразователи.
  2. Ограничители. В таком исполнении в качестве ограничивающего элемента при пуске применяются резисторы с высокими показателями сопротивления. После срабатывания таймера производится переключение двигателя на номинальное значение. Для сборки такого пускового устройства достаточно использовать контактор и реле времени, поэтому сделать его можно самостоятельно.
  3. Звезда-треугольник. Особый способ подключения обмоток, который позволяет сразу использовать полное напряжение на прямой пуск и реверс, однако выводить магнитное поле двигателя на номинальную мощность постепенно. Такой подход помогает сохранить рабочие характеристики агрегата. Чертеж подобного подключения можно найти в интернете.

Есть также варианты запуска и раскручивания асинхронного реверсивного двигателя вхолостую. Нагрузка подключается только после достижения достаточных оборотов. В таком исполнении могут применяться вариаторы, муфты, коробки передач. При необходимости реализовать быструю остановку, можно использовать динамическое торможение, для чего на обмотки статора подается постоянное напряжение.

Преимущества и недостатки короткозамкнутой разновидности

Высокая популярность и широкое распространение таких конструкций электродвигателя обусловлено его преимуществами:

  • высокая стабильность работы при номинальной нагрузке;
  • надежность и долговечность;
  • простое обслуживание асинхронного мотора, низкие затраты на эксплуатацию;
  • малая стоимость относительно других моделей;
  • высокие показатели КПД двигателя.

При правильной эксплуатации такой агрегат прослужит долгое время, не требуя частого обслуживания.

Однако есть у системы и свои недостатки:

  • высокий пусковой уровень напряжения;
  • низкий коэффициент скольжения;
  • повышенная реакция на перепады напряжения;
  • необходимость применения дополнительного оборудования для безопасного пуска асинхронного агрегата (УПП, частотники);
  • потребность во внешних управляющих узлах для регулировки скорости вращения.

Несмотря на свои недостатки, агрегаты асинхронного типа с короткозамкнутым ротором являются наиболее практичными и популярными в производстве и быту.

Возможные неисправности

Несмотря на простоту и надежность асинхронного двигателя, при неправильной эксплуатации и неблагоприятных внешних условиях они могут потерять рабочие характеристики или выйти из строя. Любые неисправности мелкого или серьезного характера можно разделить на 2 группы – электрические и механические.

Механические поломки

Эти повреждения часто заметны при внешнем осмотре или на слух в процессе работы электродвигателя:

  • дефекты корпуса, крыльчатки;
  • ослабленная фиксация обмоток;
  • деформация вала.

Также частой проблемой является износ подшипников. Для своевременного выявления поломки необходимо проявлять внимание к внешним признакам. Изношенные элементы способствуют появлению вибраций, перегреву агрегата. Также определить неисправность можно акустическим способом – по повышению уровня шума при включении питания.

Электрические неполадки

Среди поломок электрического происхождения чаще всего проявляются:

  • межвитковые замыкания;
  • повреждение обмотки;
  • пробой изоляции на корпус;
  • потеря сопротивления изолирующего материала, повреждение его целостности;
  • износ щеток в процессе длительной работы;
  • поломка контактных колец.

Для выявления таких проблем понадобится произвести замеры с помощью мультиметра и мегаомметра.

Проводя исследование асинхронного двигателя с короткозамкнутого исполнения измерительными приборами, можно проверить целостность обмоток, наличие всех фаз, уровень поступающего в него напряжения.

С помощью мегаомметра производится замер уровня сопротивления изоляции обмоток. Данный прибор выполняет измерение в условиях подачи повышенного напряжения. При снижении показателя ниже нормы (оно должно быть не ниже 0,5 МОм) необходимо принимать меры. Если он не равен нулю, можно поставить агрегат на просушку. Для этого вместо роторной части внутрь корпуса вставляют мощную лампу накаливания. Если после просушки обмоток показатель сопротивления не повысился, поломка определяется как короткое замыкание. Выявить его точное место можно при помощи омметра, по очереди, замерив сопротивление всех обмоток. Различия между показаниями для обмоток должны быть минимальными, допустимая разница – не больше 2%.

Также есть простой «народный» способ определения межвиткового замыкания. Для него понадобится металлический шарик небольших размеров и низкое напряжение. После извлечения ротора из корпуса, на обмотки подается не больше 40В. После этого внутрь забрасывают шарик, который начинает под действием магнитных полей вращаться внутри стартера. При непрерывном движении вывод – обмотки целы. Если же шарик прилип к одной точке, именно в этом месте и произошло межвитковое замыкание, необходим ремонт обмоток.

При правильном использовании и постоянном контроле исправности, не придется часто проводить исследование асинхронного агрегата с короткозамкнутого типа на предмет повреждений и выполнять ремонт. Конструкция отличается высокой надежностью и способна долгое время работать без существенного технического обслуживания. Это, в свою очередь, снижает общие эксплуатационные затраты. С учетом низкой общей себестоимости (относительно других вариаций), оно делает электродвигатели с ротором короткозамкнутого типа наиболее практичными и простыми для использования.

Нов-электро

Профессиональный сайт для энергетиков

  • Главная
  • Вопрос – Ответ
  • Документация
    • Инструкции
      • Raychem
      • Schneider Electric
      • Siemens
    • Паспорта
    • Правила
    • Технические регламенты
    • Технологические карты
  • Разное
  • Справочная
    • Эксплуатационная документация
  • Статьи

Инструкция (памятка) по эксплуатации асинхронных электродвигателей до 1000 В.

ПАМЯТКА

по эксплуатации асинхронных электродвигателей напряжением до 1000 В.

1. Общая часть.

1. Асинхронные электродвигатели могут развивать свою номинальную мощность при колебаниях напряжения в сети 5% от номинальной величины и температуре охлаждения воздуха не выше +35 о С.

2. Асинхронные электродвигатели при температуре охлаждающего воздуха ниже +35 о С, после специальных испытаний, могут быть перегружены по току до 5%, при этом температура основных узлов электродвигателя (обмоток, железа, подшипников) не должна превышать значений, указанных ниже.

3. Перегрузка электродвигателя по току белее, чем на 5% не допустима ни при каких температурных режимах.

4. На электродвигателях и приводимых ими механизмов, должны быть нанесены стрелки, указывающие направление их вращения, на пусковом устройстве двигателя должен быть обозначен агрегат, к которому он относится.

Читайте также:
Как правильно брать кредит под залог квартиры: нюансы процесса

5. Конструкция электродвигателя и его пускорегулирующая и измерительная аппаратура по виду исполнения должны соответствовать условиям окружающей среды.

6. Корпус электродвигателей и пусковой аппаратуры должны быть надежно заземлены.

7. Вращающиеся части электродвигателей и части, соединяющие электродвигатели с механизмами (муфты, шкивы) должны иметь ограждения от случайных прикосновений.

8. Корпусы электродвигателей, изготовленные из материалов, подверженных коррозии и не имеющие специальных покрытий (эмаль, оксидирование и т.п.) должны быть окрашены.

9. Для наблюдения за пуском и работой электродвигателей механизмов, регулирование технологического процесса, которых ведется по величине тока, на пусковом щите или панели должен быть установлен амперметр, измеряющий ток в цепи статора электродвигателя.

10. Кабельная муфта или труба с проложенными в ней кабелем должна подходить непосредственно к коробке контактных зажимов электродвигателя, либо кабели или провода на незащищенном участке должны иметь дополнительную изоляцию и защиту от механических повреждений (гибкие металлические провода, ограждения).

2. Эксплуатация электродвигателей.

1. Включение электродвигателей напряжением до 1000 В производится лицом, обслуживающим приводимый в движение механизм.

2. Сборка и разборка электрической схемы электродвигателей для подготовки к пуску или ремонту производится дежурным электромонтером цеха по указанию начальника смены (мастера смены) или лица, ответственного за обслуживание приводимого механизма.

3. Перед включением электродвигателя в работу необходимо проверить: чистоту электродвигателя, отсутствие на нем или вблизи от него посторонних предметов, надежность крепления ограждений, исправность заземления, наличие и затяжку креплений.

4. После включения электродвигателя и во время его работы необходимо проверить:

а) температуру корпуса электродвигателя – нагрев, который не должен превышать 90 о С;

б) температуру нагрева подшипников, которая должна быть не более 90 о С для подшипников качения и 70 о С для подшипников скольжения;

в) смазку подшипников скольжения;

г) вибрацию подшипников электродвигателя, которая при всех допустимых режимах не должна превышать 0,1 мм для электродвигателей 1500 об/мин, 0,05 мм для электродвигателей 3000 об/мин, 0,13 мм для 1000 об/мин, 0,17 мм для электродвигателей 750 об/мин и ниже;

д) осевой разбег роторов электродвигателей должен быть не более 2-4 мм для подшипников скольжения; е) отсутствие стуков и посторонних шумов в подшипниках и двигателе;

ж) нагрузку электродвигателей (по амперметрам, если таковые есть);

е) работу контактных колец и щеток на электродвигателях с фазным ротором.

5. Электродвигатели, не обеспечивающие пуск механизмов по нагрузкой, должны включаться после разгрузки приводимых механизмов.

6. Электродвигатели, длительное время находящиеся в резерве, должны быть постоянно готовы к немедленному пуску, периодически осматриваться и опробоваться по утвержденному графику.

7. Проверка состояния и режимов работы двигателей оперативным персоналом (дежурным электромонтером) проводится во время обходов оборудования, но не реже 2-х рах в смену.

8. О всех замеченных дефектах и ненормальной работе электродвигателей должна быть сделана запись в оперативном журнале и журнале дефектов оборудования, поставлен в известность начальник смены, а в дневное время энергетик цеха.

9. Малые дефекты и неисправности устраняются дежурным электромонтеров с соблюдением соответствующих правил безопасности.

10. Электродвигатель аварийно (немедленно) отключается от сети в случаях:

а) появления дыма или огня из электродвигателя или его пуско-регулирующей аппаратуры;

б) несчастного случая с человеком;

в) вибрации сверх допустимых норм, угрожающей целостности электродвигателя;

г) поломки приводимого механизма;

д) сильного снижения оборотов, сопровождаемое сильным нагревом электродвигателя.

В остальных случаях электродвигатель отключается от сети после пуска резервного агрегата или по разрешению начальника смены.

11. Защита электродвигателя должна быть выполнена в соответствии с «Правилами устройства электроустановок».

Плавкие вставки предохранителей, защищающие силовые и цепи управления, должны быть калиброванными с указанием номинального тока.

Применять некалиброванные плавкие вставки без маркировки величины номинального тока запрещается.

12. Перед включением в работу электродвигателей, ответственных позиций или длительное время находящихся в резерве (от месяца и более), необходимо проверять сопротивление изоляции обмоток двигателей мегомметром в соответствии с «Правилами эксплуатации электроустановок потребителей» (ПТЭЭП). Сопротивление должно быть не менее 1 МОм, для горячих машин не менее 0,5 МОм.

У электродвигателей мощность выше 100 кВт замеряется коэффициент абсорбции, величина которых составляет не менее 1,3.

3. Техника безопасности при обслуживании электродвигателей.

При обслуживании электродвигателей должны соблюдаться следующие правила:

1. Женщины при обслуживании электродвигателей должны надевать головной убор и спецодежду. Обслуживание агрегатов с электроприводом в женском платье не допускается.

2. При работе электродвигателя запрещается снимать ограждения и проникать за них.

3. Изолирование колец ротора допускается производить лишь при помощи колодок из изолированного материала.

4. Запрещается проводить какие-либо работы в цепях работающих (вращающихся) электродвигателей и их пуско-регулирующей аппаратуре, за исключением работ в цепи реостата и испытательных работ, проводимых по специальным утвержденным программам, в которых предусматриваются необходимые меры безопасности.

5. Открывать пусковые устройства (шкафы, ящики и т.п.), находящиеся под напряжением для производства их осмотра, разрешается только оперативному персоналу с группой по электробезопасности не ниже III.

6. Работа в пусковых устройствах может производиться при полном мнятии напряжения.

7. Подготовка к ремонту электродвигателя и допуску к работе ремонтного персонала должны производиться в строгом соответствии с правилами безопасности, при этом следует обращать внимание на исключение возможности вращения вала (статора) электродвигателя со стороны приводимого механизма.

8. При ремонте приводного механизма, электродвигатель должен быть отключен от сети, схема его полностью разбирается, питающий кабель отключается от электродвигателя и на его концах устанавливается переносное заземление. При невозможности установки переносного заземления на концах кабеля, все его токоведущие части соединяются вместе при помощи болта и изолируются. На всех приводах, ключах, кнопках, которыми может быть подано напряжение на двигатель ремонтируемого механизма, должны быть поставлены запоры и вывешены плакаты в соответствии с правилами безопасности.

Читайте также:
Как найти сантехника в Интернете: пошаговое руководство

9. Ремонт электродвигателей и испытание изоляции их обмоток производится в сроки, предусмотренные графиком ППР. Ремонт электродвигателей и их пуско-регулирующей аппаратуры производится, как правило, с ремонтом приводного механизма.

Асинхронный электродвигатель: устройство, принцип работы, виды

Одним из наиболее распространенных типов электрических машин в мире является асинхронный электродвигатель. За счет высокой надежности и неприхотливости в работе такие агрегаты получили широкое распространение в самых различных отраслях промышленности и сельского хозяйства, они помогают решать бытовые и общепроизводственные задачи любой сложности. Поэтому в данной статье мы детально рассмотрим особенности асинхронных двигателей.

Устройство

Конструктивно простейшая асинхронная машина представляет собой рамку, вращающуюся в переменном магнитном поле. Однако на практике данная модель носит скорее ознакомительный характер и практического применения в промышленности не имеет. Поэтому на рисунке 1 ниже мы рассмотрим устройство действующей модели асинхронного электродвигателя.

Рис. 1. Устройство асинхронного электродвигателя

Весь двигатель располагается в корпусе станины 7, ее основная задача состоит в обеспечении достаточной механической прочности, способной выдерживать достаточные усилия. Поэтому чем выше мощность агрегата, тем большей прочностью должна обладать станина и корпус.

Внутрь корпуса устанавливается сердечник статора 3, выступающий в роли магнитного проводника для силовых линий рабочего поля. С целью уменьшения потерь в стали магнитопровод выполняется наборным из шихтованных листов, однако в ряде моделей применяется и монолитный вариант.

В пазы сердечника статора укладывается обмотка 2, предназначенная для пропуска электрического тока и формирования ЭДС. Число обмоток будет зависеть от количества пар полюсов на каждую фазу. Также в части уложенных обмоток электродвигатели подразделяются на:

  • трехфазные;
  • двухфазные;
  • однофазные.

Внутри статора располагается подвижный элемент – ротор 6. По конструкции ротор может быть короткозамкнутым или фазным, на рисунке приведен первый вариант. В состав ротора входит сердечник 5, также набранный из шихтованной стали и беличья клетка 4. Вся конструкция насажена на металлический вал 1, передающий вращение и механическое усилие.

Принцип работы

Заключается в формировании электромагнитного поля вокруг проводника, по которому протекает электрический ток. Для асинхронного электродвигателя данный процесс начинается сразу после подачи напряжения на обмотки статора, после чего в роторе наводится ЭДС взаимоиндукции, индуцирующей вихревые токи в металлическом каркасе. Наличие вихревых токов обуславливает генерацию собственной ЭДС, которая формирует электромагнитное поле ротора. Наиболее эффективный КПД асинхронной электрической машины получается при работе от трехфазной сети.

Конструктивно обмотки статора имеют смещение в пространстве друг относительно друга на 120°, что показано на рисунке 2 ниже:

Рис. 2. Геометрическое смещение фаз в статоре

Такой прием позволяет отстроить магнитное поле рабочих обмоток в строгом соответствии с напряжением трехфазной сети, которое имеет аналогичную разность кривых электрической величины.

Рис. 3. Принцип формирования магнитного потока асинхронного двигателя

На рисунке 3 выше все три фазы изображены в разных цветах для упрощения понимания процесса, также здесь изображена кривая токов, протекающих в фазах асинхронного электродвигателя. Теперь рассмотрим физические процессы в обмотках двигателя для трех позиций показанных на рисунке:

  • I – в этой позиции максимальный ток протекает в красной обмотке электродвигателя, а значение силы тока в желтой и синей равны. Основной поток силовых линий формируется красной фазой, а два других дополняют его.
  • II – в данной точке желтая синусоида равна нулю, поэтому никакого потока не создает, а сила тока красной и синей равны. Поток формируется сразу двумя фазами и смещается по часовой стрелке вправо, совершая поворот.
  • III – третья точка характеризуется максимумом токовой нагрузки для синей кривой, а красная и желтая имеет равную амплитуду, но противоположную по направлению. В результате чего максимум магнитных линий южного и северного полюса сместиться еще на 30°.

По данному принципу магнитное поле статора вращается в асинхронной электрической машине в течении периода. За счет магнитного взаимодействия с полем статора асинхронного электродвигателя происходит поступательное движение ротора вокруг своей оси. Можно сказать, что ротор пытается догнать поле статора. Именно за счет разницы во вращении полей данный тип электрической машины получил название асинхронной.

Отличие от синхронного двигателя

Наряду с простыми асинхронными электрическими машинами в промышленности также используются и синхронные агрегаты. Основным отличием синхронного двигателя является наличие вспомогательной обмотки на роторе, предназначенной для создания постоянного магнитного потока, что показано на рисунке 4 ниже.

Рис. 4. Отличие асинхронного от синхронного электродвигателя

Эта обмотка создает магнитный поток, не зависящий от наличия электродвижущей силы в обмотках статора электродвигателя. Поэтому при возбуждении синхронного электродвигателя его вал начинает вращаться одновременно с полем статора. В отличии от асинхронного типа, где существует разница в движении, которая физически выражается как скольжение и рассчитывается по формуле:

где s – это величина скольжения, измеряемая в процентах, n1 – частота, с которой вращается поле статора, n2 – частота, с которой вращается ротор.

Синхронные электродвигатели применяются в тех устройствах, где важно соблюдать высокую точность синхронизации подачи питания и начала движения. Также они обеспечивают сохранение рабочих характеристик в момент пуска.

На практике существует огромное количество разновидностей асинхронных электродвигателей, отличающихся как сферой применения, так и мощностью согласно ГОСТ 12139-84 . В связи с тем, что все вариации перечислить невозможно, мы рассмотрим наиболее значимые критерии, по которым асинхронные аппараты разделяются на виды.

По количеству питающих фаз выделяют:

  • трехфазные – используются в сетях, где есть возможность подключиться сразу ко всем фазам, но в частных случаях могут запускаться и в однофазной сети;
  • двухфазные – применяются во многих бытовых приборах, состоят из двух рабочих обмоток, одна из которых питается напряжением сети, а вторая подключается через фазосдвигающий конденсатор.
  • однофазные – как и предыдущая модель содержат две обмотки, одна из которых рабочая, а вторая пусковая.
Читайте также:
Как покрасить гипсокартон под дерево

По типу ротора различают:

  • с короткозамкнутым ротором – имеет тяжелый пуск, но и меньшую стоимость;
  • с фазным ротором – на роторе устанавливается вспомогательная обмотка, делающая работу электродвигателя более плавной.

Рисунок 5: асинхронный двигатель с короткозамкнутым и с фазным ротором

По способу подачи питания:

  • статорные – классические модели, в которых рабочие обмотки устанавливают на статор;
  • роторные – рабочие обмотки помещаются на вращающемся элементе, широкое применение на практике получили асинхронные двигатели Шраге-Рихтера.

Способы пуска и схемы подключения

Асинхронный электродвигатель с короткозамкнутым ротором обладает низкой себестоимостью, большими пусковыми токами и низким усилием на старте. Поэтому для различных целей могут применять различные способы пуска, снижающие бросок тока в обмотках и улучшающие рабочие характеристики:

  • прямой – напряжение на электродвигатель подается через пускатели или контакторы;
  • переключение схемы соединения обмоток электродвигателя со звезды на треугольник;
  • понижение напряжения;
  • плавный пуск;
  • изменение частоты питающего напряжения.

Однофазного асинхронного двигателя.

Для асинхронного однофазного электродвигателя могут использоваться три основных способа пуска:

  • С расщеплением полюсов – используется в электродвигателях особой конструкции, но недостатком методы является постоянная потеря мощности.

  • С конденсаторным пуском – вводит пусковой конденсатор в момент запуска асинхронного двигателя и убирает его со схемы через несколько секунд после начала работы. Обладает максимальным вращательным моментом.
  • С резисторным пуском электродвигателя – обеспечивает начальный сдвиг между векторами ЭДС обмоток для скольжения в асинхронной машине.

Трехфазного асинхронного двигателя.

Трехфазные асинхронные агрегаты могут подключаться такими способами:

  • Напрямую в цепь через пускатель или контактор, что обеспечивает простоту процесса, но формирует максимальные токи. Этот способ не подходит в случае больших механических нагрузок на вал.
  • Переключением схемы со звезды на треугольник – применяется для снижения токов в обмотках электродвигателя за счет уменьшения питающего напряжения с линейного на фазное.
  • Путем подключения через преобразователь напряжения, реостаты или автотрансформатор для снижения разности потенциалов. Также используется изменение числа пар полюсов, частоты питающего напряжения и прочие.

Помимо этого трехфазные асинхронные двигатели могут использовать прямую и реверсивную схему включения в цепь. Первый вариант применяется только для вращения вала электродвигателя в одном направлении. В реверсивной схеме можно переключать движение рабочего органа в прямом и обратном направлении.

Рис. 9: прямая схема без возможности реверсирования

Рассмотрим нереверсивную схему пуска асинхронного электродвигателя (рисунок 9). Здесь, через трехполюсный автомат QF1 питание подается на пускатель KM1. При нажатии кнопки SB2 произойдет подача напряжения на обмотки электродвигателя, его остановка осуществляется кнопкой SB1. Тепловое реле KK1 применяется для контроля температуры нагрева, а лампочка HL1 сигнализирует о включенном состоянии контактора.

Рисунок 10: схема прямого включения с реверсом

Реверсивная схема (смотрите рисунок 10) устроена аналогичным образом, но в ней используются два пускателя KM1 и KM2. Прямое включение асинхронного электродвигателя производиться кнопкой SB2, а обратное SB3.

Применение

Область применения асинхронных электродвигателей охватывает достаточно большой сегмент хозяйственной деятельности человека. Поэтому их можно встретить в различных типах станочного оборудования – токарных, шлифовальных, фрезерных, прокатных и т.д. В работе грузоподъемных кранов, талей, тельферов и прочих механизмов.

Их используют для лифтов, горнодобывающей техники, землеройного оборудования, эскалаторов, конвейеров. В быту их можно встретить в вентиляторах, микроволновках, хлебопечках и прочих вспомогательных устройствах. Такая популярность асинхронных электродвигателей обусловлена их весомыми преимуществами.

Преимущества и недостатки

К преимуществам асинхронных электродвигателей, в сравнении с другими типами электрических машин следует отнести:

  • Относительно меньшая стоимость, в сравнении с другими типами электродвигателей, за счет простоты конструкции;
  • Высокая степень надежности, благодаря отсутствию вспомогательных элементов редко выходят со строя;
  • Способны выносить кратковременные перегрузки;
  • Могут включаться в цепь напрямую без использования дополнительного оборудования;
  • Низкие затраты на содержание в ходе эксплуатации.

Основными недостатками асинхронного электродвигателя являются относительно большие пусковые токи и слабый пусковой момент, что в определенной степени ограничивает сферу прямого включения. Также асинхронные электродвигатели обладают низким коэффициентом мощности и сильно зависят от параметров питающего напряжения.

Эксплуатация асинхронного двигателя

Правильная эксплуатация асинхронного двигателя — это добиться бесперебойной, надежной и качественной работы электрических машин, обеспечивающих их наилучшие технико-экономические показатели, повышать надежность их работы. Главная задача эксплуатации — поддерживать электрические машины в исправном состоянии в течение всего времени эксплуатации, обеспечивая их бесперебойную и экономичную работу. Для осуществления этой задачи необходимо проводить плановое техническое обслуживание электрических машин, включающее проведение планово-предупредительных ремонтов (ППР) и профилактических испытаний.

Асинхронные двигатели предназначены для работы в определенных режимах. Номинальные данные двигателей, указанные в паспорте или на заводском щитке машины (мощность, ток, напряжение, частота вращения и др.), характеризуют номинальный режим работы, причем термин «номинальный» применяется ко всем величинам, относящимся к номинальному режиму.

Однако на практике двигатели работают не только в номинальном режиме: допустимые отклонения от номинального режима работы регламентируются ГОСТ 183—74 *.

Отклонения напряжения питающей сети от номинального допускаются при длительной работе с номинальной нагрузкой в пределах от +10 до —5%.

При понижении напряжения в пределах 5% и номинальной нагрузке на валу двигателя соответственно возрастает ток статора электродвигателя выше номинального. Увеличиваются тепловые потери в меди статора. Однако одновременно понижается магнитная индукция за счет уменьшения напряжения. Это приводит к снижению потерь в активной стали статора. Суммарные потери в статоре (в меди и стали) мало изменяются по сравнению с режимом при номинальном напряжении. Благодаря этому температура обмотки статора сохраняется в допустимых пределах.

Читайте также:
Как нарастить дверь по высоте

При снижении напряжения питающей сети более чем на 5% потери в меди обмотки статора уже не могут быть скомпенсированы, возрастают ток и потери в роторе. В связи с этим возможно превышение температуры обмотки статора сверх допустимых значений. Для того чтобы этого не произошло, необходимо снизить нагрузку на валу двигателя ниже номинальной в соответствии с характеристиками машины при изменении напряжения питания.

Кроме того, необходимо иметь в виду, что вращающий момент двигателя пропорционален квадрату напряжения. При значительных снижениях напряжения сети вращающий момент может стать меньше момента сопротивления на валу электродвигателя, что приведет к его торможению.

При превышении напряжения питания над номинальным в пределах до 10% наблюдается некоторое допустимое увеличение температуры активной стали за счет роста магнитной индукции. Однако в результате уменьшения тока статора снижается нагрев обмотки. Такое повышение напряжения не опасно и для изоляции обмотки. Повышение напряжения более чем на 10% не рекомендуется из-за возможностей повышенного нагрева активной стали статора.

Отклонения частоты питающей сети от номинальной допускаются длительно в пределах ±5%. При увеличении частоты будет возрастать ток статора, и тем больше, чем меньше ток XX данного типа асинхронного электродвигателя.

При снижении частоты у нагруженного двигателя при небольшом токе XX ток статора уменьшается за счет снижения нагрузки на валу. В дальнейшем ток статора возрастает, несмотря на продолжающееся снижение нагрузки. При большом токе холостого хода рост тока статора наблюдается с начала снижения частоты.

Практически допускается кратковременное (не более 2 мин) повышение частоты на 20% сверх наибольшей, указанной на щитке электродвигателя. Это не приводит к повреждениям или остаточным деформациям в двигателях.

При одновременном отклонении напряжения и частоты в питающей сети от номинальных значений асинхронный двигатель должен обеспечивать номинальную мощность, если сумма абсолютных значений этих отклонений не превосходит 10%.

Предельно допустимая температура подшипников скольжения не должна превышать 80 °С (температура масла— не более 65 °С), а для подшипников качения— 100° С. Более высокие температуры допустимы для специальных подшипников или сортов масла и указываются в технических условиях для конкретных типов двигателей.

Необходимо отметить, что в большинстве случаев температура подшипников качения значительно ниже предельно допустимой. Поэтому, если электродвигатель в течение длительного времени работал в одних и тех же условиях, с одной и той же температурой подшипников, а затем она внезапно увеличилась, это указывает на появление дефектов в подшипниках.

Вибрация двигателя не должна превышать значений, приведенных в разделе “Выбор электродвигателя по уровню вибрации и шума“.

Повышение вибрации сверх допустимой отрицательно сказывается на подшипниках и обмотках двигателя, увеличивает его износ и расшатывает крепления. В ряде случаев при сильной вибрации возможны задевание ротора за статор, поломка вала, обрывы в обмотках и др.

Асинхронные двигатели мощностью более 0,6 кВт допускают кратковременные перегрузки по току в пределах 50%, в течение 2 мин, кроме машин с непосредственным охлаждением, которые допускают такую перегрузку в течение 1 мин. Эти перегрузки допускаются при работе двигателей в нагретом состоянии.

Указанные перегрузки по току двигателя должны выдерживать без остаточных деформаций и повреждений, включая распайку соединений обмоток статора и ротора.

Начальный пусковой ток асинхронного короткозамкнутого двигателя может превышать номинальный ток в 5,5—7 раз для мощностей от 0,6 до 400 кВт. Пусковой ток возникает в обмотке статора двигателя в момент подачи на нее напряжения и практически мало снижается, пока происходит разгон до частоты вращения, равной 85—90 % номинальной. При частоте вращения, близкой к номинальной, значение тока снижается до номинального, а при неполной нагрузке на валу — меньше номинального.

Наиболее быстро, за время примерно 2—4 с, запускаются насосы, кроме мощных питательных насосов, время разбега которых составляет 7—8 с. Механизмы с большими маховыми массами (дымососы, дробилки и др.) запускаются за время примерно 15—20 с.

Минимальный вращающий момент в процессе пуска имеет важное значение, так как от его величины зависит возможность запуска двигателя, особенно при больших моментах сопротивления на валу. Кратность минимального вращающего момента оговорена в ГОСТ 183—74 * и должна быть не менее 0,5 номинального (но не менее 0,5 пускового) для односкоростных трехфазных двигателей мощностью до 100 кВт, 0,3 номинального (но не менее 0,5 пускового) для односкоростных асинхронных двигателей мощностью 100 кВт и выше, 0,3 номинального для однофазных и многоскоростных трехфазных двигателей.

Начальный пусковой вращающий момент развивается трехфазным асинхронным короткозамкнутый двигателем при неподвижном роторе, установившемся токе, номинальном напряжении и номинальной частоте. Значения номинальной кратности этого момента оговариваются в стандартах на отдельные типы двигателей.

Максимальный вращающий момент, развиваемый трехфазными асинхронными двигателями, в установившемся режиме должен быть не менее 1,6 номинального для двигателей общего назначения, а также для двигателей с пусковым током не более 4,5 номинального.

Выше были приведены значения ряда наиболее важных параметров двигателей, знание которых необходимо при эксплуатации.

Техника безопасноти при эксплуатации асинхронных электродвигателей

При эксплуатации асинхронных электродвигателей существует целый ряд правил и требований, предъявляемых к ним с точки зрения техники безопасности.

Прежде всего необходимо отметить наиболее характерные ситуации, при которых требуется немедленное (аварийное) отключение электродвигателя от сети: угроза несчастного случая или несчастный случай с человеком, требующие немедленной остановки двигателя; наличие дыма или огня из двигателя или его пускорегулирующей аппаратуры; вибрации сверх допустимых норм, угрожающие целости двигателя; поломка приводимого механизма; нагрев подшипников сверх допустимой температуры, указанной в инструкции завода—изготовителя двигателя; существенное снижение частоты вращения, сопровождающееся быстрым нагревом двигателя.

В зависимости от особенностей конкретного производства в инструкции по эксплуатации асинхронных двигателей могут быть указаны и другие случаи, при которых требуется аварийное отключение двигателей, а также указан порядок устранения аварийной ситуации и последующего пуска двигателя.

Читайте также:
Вентилируемый фасад: особенности и преимущества

Для предотвращения поражения электрическим током обслуживающего персонала выводы статорной и роторной обмоток должны быть закрыты ограждениями, снятие которых требует отвертывания гаек или вывинчивания винтов, а корпус двигателя должен быть надежно заземлен.

Вращающиеся части машин также должны быть закрыты ограждениями, снятие которых во время работы двигателей строго воспрещается.

В тех производствах, где возможна систематическая перегрузка электродвигателей по технологическим причинам, необходима установка защиты от перегрузки. Эта защита должна воздействовать на аварийную сигнализацию, на управляющие органы с целью разгрузки механизма или на пусковую аппаратуру для отключения двигателя.

Асинхронные двигатели должны иметь защиту от коротких замыканий с помощью автоматического выключателя либо предохранителей с плавкими вставками. Уставки автоматов и номинальный ток плавких вставок выбираются так, чтобы не допускать ложного срабатывания защиты при пусковых токах.

Для короткозамкнутых двигателей с легкими условиями пуска ток плавкой вставки должен быть равным 0,4 пускового тока двигателя. Для тяжелых условий пуска ток плавкой вставки выбирается равным 0,5—0,6 пускового тока двигателя. Для электродвигателей с фазным ротором ток плавкой вставки составляет 1—2 номинального тока двигателя.

Перед пуском двигателя необходимо своевременное предупреждение рабочих, обслуживающих его, о запуске.

Особенности асинхронного электродвигателя

Характеристика асинхронного электродвигателя как машины, предназначенной для преобразования электрической энергии переменного тока в механическую энергию. Изучение его преимуществ и недостатков, принципов работы, обслуживания, техники безопасности.

Рубрика Физика и энергетика
Вид реферат
Язык русский
Дата добавления 28.01.2015
Размер файла 463,8 K
  • посмотреть текст работы
  • скачать работу можно здесь
  • полная информация о работе
  • весь список подобных работ

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Актуальность темы связана с тем, что асинхронные электродвигатели очень широко используются на предприятиях, в устройствах автоматики, телемеханики и т.п. Широкое использование асинхронных электродвигателей объясняется простотой их конструкции, надежностью в работе, хорошими эксплуатационными свойствами, невысокой стоимостью и простотой в обслуживании.

Конкретной целью этой работы является подтверждение квалификации полученной на практических занятиях, так как дает возможность подробно изучить данную тему.

Углубление в данной теме даст точное понятие о ремонте, обслуживанию, принципе работы, достоинствах и недостатков асинхронных электродвигателей, что в свою очередь даст не заменимый опыт и применение знаний по электронике на практике.

Асинхронный двигатель – это асинхронная машина, предназначенная для преобразования электрической энергии переменного тока в механическую энергию. Само слово “асинхронный” означает не одновременный. При этом имеется ввиду, что у асинхронных двигателей частота вращения магнитного поля статора всегда больше частоты вращения ротора. Работают асинхронные двигатели, как понятно из определения, от сети переменного тока.

1 – вал, 2,6 – подшипники, 3,8 – подшипниковые щиты, 4 – лапы, 5 – кожух вентилятора, 7 – крыльчатка вентилятора, 9 – короткозамкнутый ротор, 10 – статор, 11 – коробка выводов.

Начнем вращать магнит за ручку по часовой стрелке. Поле магнита также начнет вращаться и при вращении будет пересекать своими силовыми линиями медный цилиндр. В цилиндре, по закону электромагнитной индукции, возникнут вихревые токи, которые создадут свое собственное магнитное поле – поле цилиндра. Это поле будет взаимодействовать с магнитным полем постоянного магнита, в результате чего цилиндр начнет вращаться в ту же сторону, что и магнит.

Установлено, что скорость вращения цилиндра несколько меньше скорости вращения поля магнита.

Действительно, если цилиндр вращается с той же скоростью, что и магнитное поле, то магнитные силовые линии не пересекают его, а следовательно, в нем не возникают вихревые токи, вызывающие вращение цилиндра.

Преимущества и недостатки

Асинхронные двигатели подразделяются на два вида, одни имеют короткозамкнутый ротор, вторые – фазный. Большинство используемых электрических двигателей являются асинхронными, имеющими короткозамкнутый ротор. Их широкое применение в первую очередь обуславливается простотой в обслуживании, эксплуатации, простотой конструкции, низкой стоимостью и высокой надежностью. Что касается недостатков, то такие модели имеют малый пусковой и большой спусковой ток, чувствительны к изменениям параметров в сети, для плавного регулирования скорости понадобиться преобразователь частоты.

Помимо этого асинхронные двигатели из сети потребляют реактивную мощность. Предел их применения определяется мощностью системы электроснабжения определенного предприятия. Большинство пусковых токов при малой мощности системы могут создавать значительные понижения напряжения. При использовании двигателей с фазным ротором можно снизить пусковой ток, тем самым увеличить пусковой момент, благодаря введению пусковых реостатов в цепь ротора. Правда, из-за усложненной конструкции и увеличения стоимости применение данных электродвигателей ограничено. В основном их применяют как приводы механизмов с тяжелыми пусковыми условиями. Чтобы уменьшить пусковые токи асинхронного двигателя, который имеет короткозамкнутый ротор, необходимо использовать преобразователь частоты или устройство с плавным пуском. Системы, которые имеют ступенчатое изменение скорости, такие как лифты, лучше всего работают на многоскоростных асинхронных двигателях. Механизмы, которые требуют остановку на некоторое время и фиксацию вала при исчезновении напряжения питания, работают на асинхронных двигателях с электромагнитным тормозом, такие как лебедки или металлообрабатывающие станки

При подаче к обмотке статора напряжения, в каждой фазе создаётся магнитный поток, который изменяется с частотой подаваемого напряжения. Эти магнитные потоки сдвинуты относительно друг друга на 120°, как во времени, так и в пространстве. Результирующий магнитный поток оказывается при этом вращающимся.Результирующий магнитный поток статора вращается и тем самым создаёт в проводниках ротора ЭДС. Так как обмотка ротора, имеет замкнутую электрическую цепь, в ней возникает ток, который в свою очередь взаимодействуя с магнитным потоком статора, создаёт пусковой момент двигателя, стремящийся повернуть ротор в направлении вращения магнитного поля статора. Когда он достигает значения, тормозного момента ротора, а затем превышает его, ротор начинает вращаться. При этом возникает так называемое скольжение.

Читайте также:
Как заделать вентиляционное отверстие в стене

Скольжение s – это величина, которая показывает, насколько синхронная частота n1 магнитного поля статора больше, чем частота вращения ротора n2, в процентном соотношении.

Скольжение это крайне важная величина. В начальный момент времени она равна единице, но по мере возрастания частоты вращения n2 ротора относительная разность частот n1-n2 становится меньше, вследствие чего уменьшаются ЭДС и ток в проводниках ротора, что влечёт за собой уменьшение вращающего момента. В режиме холостого хода, когда двигатель работает без нагрузки на валу, скольжение минимально, но с увеличением статического момента, оно возрастает до величины sкр – критического скольжения. Если двигатель превысит это значение, то может произойти так называемое опрокидывание двигателя, и привести в последствии к его нестабильной работе. Значения скольжения лежит в диапазоне от 0 до 1, для асинхронных двигателей общего назначения оно составляет в номинальном режиме – 1 – 8 %.

Как только наступит равновесие между электромагнитным моментом, вызывающим вращение ротора и тормозным моментом создаваемым нагрузкой на валу двигателя процессы изменения величин прекратятся.

Выходит, что принцип работы асинхронного двигателя заключается во взаимодействии вращающегося магнитного поля статора и токов, которые наводятся этим магнитным полем в роторе. Причём вращающий момент может возникнуть только в том случае, если существует разность частот вращения магнитных полей.

Обслуживание двигателей начинается с монтажа, поэтому необходимо упомянуть некоторые технологические операции по подготовке нового оборудования к эксплуатации: Электродвигатель, доставленный к месту установки с завода-изготовителя или со склада, где он хранился до монтажа, или из мастерской после ревизии, устанавливается на подготовленное основание. В качестве оснований для электродвигателей применяют в зависимости от условий: литые чугунные или стальные плиты, сварные металлические рамы, кронштейны, салазки и т. д. Плиты, рамы или салазки выверяются по осям и в горизонтальной плоскости и закрепляются на бетонных фундаментах, перекрытиях и т. п. при помощи фундаментных болтов, которые заделываются в заготовленные отверстия. Эти отверстия обычно оставляют при бетонировании фундаментов, закладывая заблаговременно в соответствующих местах деревянные пробки.

Пример тех. паспорта

Разборку электродвигателя при монтаже производят только в том случае, если обнаружен обрыв обмоток, или сопротивление изоляции в Мом, по отношению к корпусу, измеренное мегомметром на 1000 В ниже R = U/(1000 + 0,001)N, где U – номинальное напряжение, В; N – мощность электродвигателя, кВт. Для электродвигателей на напряжение 6 тли 10 кВ сопротивление изоляции обмоток измеряют мегомметром на 2500 В при этом сопротивление изоляции не должно быть ниже 6 Мом.

Внешний осмотр и оценка состояния механической части

Техническое обслуживание асинхронного электродвигателя следует начинать с его подробного внешнего осмотра. В первую очередь определяется наличие очевидных неисправностей. Корпус двигателя следует очистить от грязи и пыли при помощи стальной щетки. Он не должен иметь сколов и повреждений. Из-за вибраций и динамических нагрузок, а также при неровностях и дефектах монтажной площадки, нередко случается, что одна из монтажных «лап» откалывается. Такой двигатель выбраковывается и не допускается к дальнейшей эксплуатации.

Внешний осмотр и оценка состояния электрической части

Для оценки состояния статорных выводов и токосъемного устройства ротора, крышки двигателя вскрываются. Изоляция статорных выводов должна иметь быть целой, без трещин и повреждений, в противном случае изоляцию необходимо восстановить при помощи изоленты и киперной ленты. Клеммная колодка, при ее наличии, не должна быть оплавлена или повреждена – в противном случае она подлежит замене.

Измерения и испытания

На данном этапе при помощи мегомметра проверяется сопротивление изоляции статорных обмоток, а для двигателей с фазным ротором – и обмоток ротора. Электрическое сопротивление статорных обмоток проверяется относительно корпуса двигателя, а сопротивление обмоток ротора – относительно рабочего вала. При рабочей температуре нормальным считается сопротивление изоляции обмоток 0,5 Мом или более. На практике же сопротивление изоляции исправных электродвигателей исчисляется десятками Мом.

Основная цель технического обслуживания – профилактика и своевременное обнаружение неисправностей:

Повреждение ротора или статора

Необходимость замены неисправных подшипников

Нагрев из-за проблем вентляции

Если обнаруженные дефекты не являются крупными и серьезными, принимается решение об их устранении на месте в ходе ТО. Для произведения крупного и ответственного ремонта двигатели доставляются в специально оборудованный электроцех.

Зачистка контактных колец или коллектора

Регулировка щеточных механизмов и замена щеток

Регулировка и крепление траверз

Восстановление изоляции перемычек и выводных концов

Смена или добавление про необходимости смазки в подшипники

Проверка плотности посадки и состояния полумуфты

Диагностика работоспособности всех основных узлов

Измерение сопротивления изоляции обмоток мегомметром

Промывка узлов и деталей

Замена неисправных пазовых клиньев и изоляционных втулок

Мойка, протирка и сушка обмоток

Двойная сушка и протирка изоляционным лаком

Покрытие обмоток эмалями

Проверка исправности и крепления вентилятора

Проточка шеек вала после наплавки

Проверка и выверка зазоров

Смена фланцевых прокладок

Проточка и шлифовка контактных колец

Ремонт и регулировка щеточных механизмов

Проточка коллектора и его обработка

Промывка подшипников качения и закладка в них смазки

Частичная пропайка «петушков»

Испытание изоляции обмоток повышенным напряжением

Балансировка ротора (якоря)

Сборка электрической машины и испытаниу в соответствии с ГОСТ

Полная и частичная замена обмоток или их ремонт с последующей не менее 2-кратной пропиткой

Правка, проточка шеек или замена вала ротора

Ремонт или изготовление подшипниковых щитов и фланцев

Переборка контактных колец или коллектора

Читайте также:
Как приклеить гипсокартон к металлу

Полная пропайка «петушков»

Замена вентиляторов и крепёжных деталей

Проверка крепления активного железа на валу и в статоре и его ремонт

Чистка, сборка, окраска электрической машины и испытание в соответствии с ГОСТ для новых машин.

электродвигатель асинхронный обслуживание

Перед началом работы наладчик должен:

Надеть положенную по нормам спецодежду, спец обувь, защитную каску (каскетку), снять металлосодержащие украшения (цепочки, кольца, часы в металлическом корпусе) и потребовать выполнения этого электромеханиками.

Подготовить и проверить наличие в инструментальном ящике исправного проверенного инструмента, защитных и предохранительных средств, приспособлений, а также запасных частей и материалов.

Перед применением основных электрозащитных средств для электроустановок напряжением до 1000В, а именно: диэлектрических перчаток, указателей напряжения, слесарно-монтажного инструмента с изолирующими рукоятками, изолирующих штанг, изолирующих и электроизмерительных клещей, а также предохранительных поясов необходимо произвести:

* визуальный осмотр исправности защитного средства,

* убедиться в наличии инвентарного (идентификационного) номера,

* убедиться в своевременности проведения периодических испытаний на основании поставленного срока годности на защитном средстве.

Меры безопасности при выполнении работ в электроустановках

Работники, не обслуживающие электроустановки, могут допускаться в них в сопровождении оперативного персонала, имеющего группу III по электробезопасности, либо работника, имеющего право единоличного осмотра. Сопровождающий работник должен следить за безопасностью людей, допущенных в электроустановки, и предупреждать их о запрещении приближаться к токоведущим и движущимся частям.

При несчастных случаях для освобождения пострадавшего от действия электрического тока напряжение должно быть снято немедленно без предварительного разрешения руководителя работ.

При работе под напряжением в электроустановках необходимо:

* оградить расположенные вблизи рабочего места другие токоведущие части, находящие под напряжением, к которым возможно случайное прикосновение;

* работать стоя на резиновом диэлектрическом ковре;

* применять изолированный инструмент (у отверток, кроме того, должен быть изолированный стержень), пользоваться диэлектрическими перчатками.

Не допускается работать в одежде с короткими или засученными рукавами, а также использовать ножовки, напильники, металлические метры и т.п.

Не допускается прикасаться без применения электрозащитных средств к изоляторам, изолирующим частям оборудования, находящегося под напряжением.

При работе с ручным электроинструментом необходимо использовать устройства защитного отключения (УЗО), рассчитанные на 6 мА. Допускается применение устройства на 10 мА с заземленными или имеющими двойную изоляцию инструментами.

Все работы, для выполнения которых не требуется подача электропитания, должны производиться при отключенном и запертом на замок вводном устройстве.

Требования безопасности по окончании работы

После окончания работы наладчик должен проверить наличие инструмента, оставшихся запчастей, материалов и при обнаружении утери принять меры к их обязательному нахождению.

Инструмент, защитные и предохранительные средства, электроизмерительные приборы после пользования ими должны быть осмотрены, протерты, уложены в места, предназначенные для их хранения.

О проделанной работе, выявленных и не устраненных неисправностях наладчик должен доложить прорабу, мастеру (ответственному лицу за организацию работ) и сделать запись в соответствующем журнале.

Снять спецодежду, спец обувь и средства индивидуальной защиты, очистить и убрать их в предназначенное для хранения место.

Вымыть лицо и руки теплой водой с мылом.

Заключение в процессе работы над темой я изучил возможные конструкции электрических асинхронных двигателей. При последующем трудоустройстве я смогу осуществлять монтаж или обслуживание асинхронных двигателей до 1000В.

1. Д. Э. Брускин, Электрические машины и микромашины, Д. Э. Брускин, А. Е. Зорохович, В. С. Хвостов. – М.: Висшая школа, 1981.

2. А. И. Вольдек, Электрические машины. А. И. Вольдек. – Л.: Энергия, 1978.

3. М. М. Кацман. Лабороторные работы по электрическим машинаи и электроприводу. М. М. Кацман. – М.: изд, центр >, 2003

4. М. М. Кацман. Электрические приводы. М. М. Кацман. – М.: изд, центр >, 2005.

5. М. М. Кацман. Справочник по электрическим машинам. М. М. Кацман. – М.: изд, центр >, 2005.

6. М. М. Кацман. Сборник задач по электрическим машинам. М. М. Кацман. – М.: изд, центр >, 2003.

7. М. М. Кацман. Электрические машины приборных устройств и средств автоматизации. М. М. Кацман. – М.: изд, центр >, 2005.

8.Ю. И. Келим. Типовые элементы систем автоматического управления. Ю. М. Келим. – М.: Форум, 2004.

9. И. П. Копылов. Электрические машины. И. П. Копылов. – М.: Высшая школы, 2002.

10.Г. Н. Костенко. Л. М. Пиотровский. Электрическме машины. Г. Н. Костенко. Л. М. Пиотровский. – Л.: Энергия, 1973.

Размещено на Allbest.ru

Подобные документы

Конструкция асинхронного электродвигателя. Асинхронные и синхронные машины. Простые модели асинхронного электропривода. Принцип получения движущегося магнитного поля. Схемы включения, характеристики и режимы работы трехфазного асинхронного двигателя.

презентация [3,0 M], добавлен 02.07.2019

Устройство и принцип действия трехфазного асинхронного двигателя с короткозамкнутым ротором. Рабочие характеристики и свойства двигателя, его применение для преобразования электрической энергии трехфазного переменного тока в механическую энергию.

лабораторная работа [117,9 K], добавлен 22.02.2013

Исследование асинхронного электродвигателя, включающее режим пуска на холостом ходу и наброс нагрузки, проводимое на имитационной модели, собранной в среде Matlab Simulink. Отличительные особенности динамической и статической характеристик двигателя.

контрольная работа [1,1 M], добавлен 14.04.2015

Выбор главных размеров трехфазного асинхронного электродвигателя. Определение числа пазов, витков и сечения провода обмотки статора. Расчет размеров зубцовой зоны статора и воздушного зазора. Расчет короткозамкнутого ротора, намагничивающего тока.

курсовая работа [285,6 K], добавлен 14.03.2009

Гидравлические машины как устройства, служащие для преобразования механической энергии двигателя в энергию перемещаемой жидкости или для преобразования гидравлической энергии потока жидкости в механическую энергию, методика расчета ее параметров.

курсовая работа [846,7 K], добавлен 09.05.2014

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: